Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Colin Neil JonesColin Jones is an Associate Professor in the Automatic Control Laboratory at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland. He was a Senior Researcher at the Automatic Control Lab at ETH Zurich until 2011 and obtained a PhD in 2005 from the University of Cambridge for his work on polyhedral computational methods for constrained control. Prior to that, he was at the University of British Columbia in Canada, where he took a BASc and MASc in Electrical Engineering and Mathematics. Colin has worked in a variety of industrial roles, ranging from commercial building control to the development of custom optimization tools focusing on retail human resource scheduling. His current research interests are in the theory and computation of predictive control and optimization, and their application to green energy generation, distribution and management.
Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Nicolas Henri Bernard FlammarionNicolas Flammarion is a tenure-track assistant professor in computer science at EPFL. Prior to that, he was a postdoctoral fellow at UC Berkeley, hosted by Michael I. Jordan. He received his PhD in 2017 from Ecole Normale Superieure in Paris, where he was advised by Alexandre d’Aspremont and Francis Bach. In 2018 he received the prize of the Fondation Mathematique Jacques Hadamard for the best PhD thesis in the field of optimization. His research focuses primarily on learning problems at the interface of machine learning, statistics and optimization.
Stephan MorgenthalerACADEMIC POSITIONS
Professor of Applied Statistics, EPFL, 1988-present
Associate Professor of Statistics, Yale University, 1987-1988
Assistant Professor of Statistics, Yale University, 1983-1987
Instructor of Mathematics, Massachusetts Institute of Technology, 1983-1984