**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Philosophiæ Naturalis Principia Mathematica

Summary

Philosophiæ Naturalis Principia Mathematica (English: The Mathematical Principles of Natural Philosophy) often referred to as simply the Principia (prɪnˈsɪpiə,_prɪnˈkɪpiə), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The Principia is written in Latin and comprises three volumes, and was first published on 5 July 1687.
The Principia is considered one of the most important works in the history of science. The French mathematical physicist Alexis Clairaut assessed it in 1747: "The famous book of Mathematical Principles of Natural Philosophy marked the epoch of a great revolution in physics. The method followed by its illustrious author Sir Newton ... spread the light of mathematics on a science which up to then had remained in the darkness of conjectures and hypotheses."
A more recent assessment has been that while acceptance of Newton's laws was not immediate, by the end of the century a

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

No results

Related concepts (68)

Isaac Newton

Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosoph

Johannes Kepler

Johannes Kepler (ˈkɛplər; joˈhanəs ˈkɛplɐ, -nɛs -; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure

Galileo Galilei

Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei (ˌɡælᵻˈleɪoʊ_ˌɡælᵻˈleɪ , USalsoˌɡælᵻˈliːoʊ_- , ɡaliˈlɛːo ɡaliˈlɛi) or simply

Related courses (8)

Related publications (1)

Related people

PHYS-101(en): General physics : mechanics (English)

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the capacity to quantitatively analyze these effects with the appropriate theoretical tools.

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant la situation et appliquant les lois de la physique.

COM-500: Statistical signal and data processing through applications

Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, with an application oriented approach and hands-on numerical exercises.

No results

Loading

Related lectures (10)

New technologies in computer science applied to numerical computations open the door to alternative approaches to mechanical problems using the finite element method. In classical approaches, theoretical developments often become cumbersome and the computer model which follows shows resemblance with the initial problem statement. The first step in the development consists usually in the analysis of the physics of the problem to simulate. The problem is generally described by a set of equations including partial differential equations. This first model is then replaced by successive equivalent or approximated models. The final result consists in a mathematical description of elemental matrices and algorithms describing the matrix form of the problem. The traditional approach consists then in constructing a computer model, generally complex and often quite different from the original mathematical description, thus making further corrections difficult. Therefore, the crucial problem of both the software architecture and the choice of the appropriate programming language is raised. Partially breaking with this approach, we propose a new approach to develop and program finite element formulations. The approach is based on a hybrid symbolic/numerical approach on the one hand, and on a high level software tool, object-oriented programming (supported here by the languages Smalltalk and C++) on the other hand. The aim of this work is to develop an appropriate environment for the algebraic manipulations needed for a finite element formulation applied to an initial boundary value problem, and also to perform efficient numerical computations. The new environment should make it possible to manage al1 the concepts necessary to solve a physical problem: manipulation of partial differential equations, variational formulations, integration by parts, weak forms, finite element approximations… The concepts manipulated therefore remain closely related to the original mathematical framework. The result of these symbolic manipulations is a set of elemental data (mass matrix, stiffness matrix, tangent stiffness matrix,…) to be introduced in a classical numerical code. The object-oriented paradigm is essential to the success of the implementation. In the context of the finite element codes, the object-oriented approach has already proved its capacity to represent and handle complex structures and phenomena. This is confirmed here with the symbolic environment for derivation of finite element formulations in which objects such as expression, integral and variational formulation appear. The link between both the numerical world and the symbolic world is based on an object-oriented concept for automatic programmation of matrix forms derived from the finite element method. As a result, a global environment in which the numerical is capable of evolving, using a language close to the natural mathematical one, is achieved. The potential of the approach is further demonstrated, on the one hand, by the wide range of problems solved in linear mechanics (electrodynamics in 1 and 2D, heat diffusion,…) as well as in nonlinear mechanics (advection dominated 1D problem, Navier Stokes problem), and, on the other hand by the diversity of the formulations manipulated (Galerkin formulations, space-time Galerkin formulations continuous in space and discontinuous in time, generalized Galerkin least-squares formulations).