Microangiopathic hemolytic anemia (MAHA) is a microangiopathic subgroup of hemolytic anemia (loss of red blood cells through destruction) caused by factors in the small blood vessels. It is identified by the finding of anemia and schistocytes on microscopy of the blood film.
In diseases such as hemolytic uremic syndrome, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, and malignant hypertension, the endothelial layer of small vessels is damaged with resulting fibrin deposition and platelet aggregation. As red blood cells travel through these damaged vessels, they are fragmented resulting in intravascular hemolysis. The resulting schistocytes (red cell fragments) are also increasingly targeted for destruction by the reticuloendothelial system in the spleen, due to their narrow passage through obstructed vessel lumina. It is seen in systemic lupus erythematosus, where immune complexes aggregate with platelets, forming intravascular thrombi. Microangiopathic hemolytic anemia is also seen in cancer.
Microangiopathic hemolytic anemia may be suspected based on routine medical laboratory tests such as a CBC (complete blood cell count). Automated analysers (the machines that perform routine full blood counts in most hospitals) are designed to flag blood specimens that contain abnormal amounts of red blood cell fragments or schistocytes.
Disseminated intravascular coagulation
HELLP syndrome
Thrombotic thrombocytopenic purpura
Hemolytic uremic syndrome
Cancer
Malignant hypertension
Scleroderma renal crisis
Malfunctioning cardiac valves (called the "Waring Blender syndrome")
Kasabach–Merritt syndrome
Insertion of foreign bodies
Drugs (e.g. cancer chemotherapy)
others diseases: eclampsia, renal allograft rejection, paroxysmal nocturnal hemoglobinuria, scleroderma, and vasculitides such as polyarteritis nodosa and granulomatosis with polyangiitis, antiphospholipid syndrome
In all causes, the mechanism of MAHA is the formation of a fibrin mesh due to increased activation of the system of coagulation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and kidney failure. The classic TMAs are hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Other conditions with TMA include atypical hemolytic uremic syndrome, disseminated intravascular coagulation, scleroderma renal crisis, malignant hypertension, antiphospholipid antibody syndrome, and drug toxicities, e.
Hemolytic–uremic syndrome (HUS) is a group of blood disorders characterized by low red blood cells, acute kidney failure, and low platelets. Initial symptoms typically include bloody diarrhea, fever, vomiting, and weakness. Kidney problems and low platelets then occur as the diarrhea progresses. Children are more commonly affected, but most children recover without permanent damage to their health, although some children may have serious and sometimes life-threatening complications.
Hemolytic anemia or haemolytic anaemia is a form of anemia due to hemolysis, the abnormal breakdown of red blood cells (RBCs), either in the blood vessels (intravascular hemolysis) or elsewhere in the human body (extravascular). This most commonly occurs within the spleen, but also can occur in the reticuloendothelial system or mechanically (prosthetic valve damage). Hemolytic anemia accounts for 5% of all existing anemias. It has numerous possible consequences, ranging from general symptoms to life-threatening systemic effects.
The effect of the ADP receptor antagonists ATP and adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and the ADP-utilizing enzyme systems creatine phosphokinase/creatine phosphate (CPK/CP) and pyruvate kinase/phosphoenol pyruvate (PK/PEP) on plat ...
Coagulated SBR or nitrile rubber latexes with low salt contents, suitable for processing in belt or bar driers, are prepd. by adding mixts. of NaCl and quaternary ammonium polymers to the latexes. Thus, an 18%-solids nitrile rubber latex contg. 0.4 phr pol ...
1980
A new nonbiologic photopolymerizable glue, polyethyleneglycol 400 diacrylate, was studied with respect to its mechanical and biochemical interaction with human blood vessels. Using the human placental artery model, we tested the ability of polyethyleneglyc ...