Concept

Critical point (set theory)

In set theory, the critical point of an elementary embedding of a transitive class into another transitive class is the smallest ordinal which is not mapped to itself. Suppose that is an elementary embedding where and are transitive classes and is definable in by a formula of set theory with parameters from . Then must take ordinals to ordinals and must be strictly increasing. Also . If for all and , then is said to be the critical point of . If is V, then (the critical point of ) is always a measurable cardinal, i.e. an uncountable cardinal number κ such that there exists a -complete, non-principal ultrafilter over . Specifically, one may take the filter to be . Generally, there will be many other

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.