In cryptography, blinding is a technique by which an agent can provide a service to (i.e., compute a function for) a client in an encoded form without knowing either the real input or the real output. Blinding techniques also have applications to preventing side-channel attacks on encryption devices. More precisely, Alice has an input x and Oscar has a function f. Alice would like Oscar to compute y = f(x) for her without revealing either x or y to him. The reason for her wanting this might be that she doesn't know the function f or that she does not have the resources to compute it. Alice "blinds" the message by encoding it into some other input E(x); the encoding E must be a bijection on the input space of f, ideally a random permutation. Oscar gives her f(E(x)), to which she applies a decoding D to obtain D(f(E(x))) = y. Not all functions allow for blind computation. At other times, blinding must be applied with care. An example of the latter is Rabin–Williams signatures. If blinding is applied to the formatted message but the random value does not honor Jacobi requirements on p and q, then it could lead to private key recovery. A demonstration of the recovery can be seen in discovered by Evgeny Sidorov. The most common application of blinding is the blind signature. In a blind signature protocol, the signer digitally signs a message without being able to learn its content. The one-time pad (OTP) is an application of blinding to the secure communication problem, by its very nature. Alice would like to send a message to Bob secretly, however all of their communication can be read by Oscar. Therefore, Alice sends the message after blinding it with a secret key or OTP that she shares with Bob. Bob reverses the blinding after receiving the message. In this example, the function f is the identity and E and D are both typically the XOR operation. Blinding can also be used to prevent certain side-channel attacks on asymmetric encryption schemes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.