François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Paolo IennePaolo Ienne has been a Professor at the EPFL since 2000 and heads the Processor Architecture Laboratory (LAP). Prior to that, he worked for the Semiconductors Group of Siemens AG, Munich, Germany (which later became Infineon Technologies AG) where he was at the head of the Embedded Memories unit in the Design Libraries division. His research interests include various aspects of computer and processor architecture, FPGAs and reconfigurable computing, electronic design automation, and computer arithmetic. Ienne was a recipient of Best Paper Awards at the 20th, 24th, and 28th ACM/SIGDA International Symposia on Field-Programmable Gate Arrays (FPGA), in 2012, 2016 and 2020, at the 19th and 30th International Conference on Field-Programmable Logic and Applications (FPL), in 2009 and 2020, at the International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), in 2007, and at the 40th Design Automation Conference (DAC), in 2003; many other papers have been candidates to Best Paper Awards in prestigious venues. He has served as general, programme, and topic chair of renown international conferences, including organizing in Lausanne the 26th International Conference on Field-Programmable Logic and Applications (FPL) in 2016. He serves on the steering committee of the IEEE Symposium on Computer Arithmetic (ARITH) and of the International Conference on Field-Programmable Logic and Applications (FPL). Ienne has guest edited a number of special issues and special sections on various topics for IEEE and ACM journals. He is regularly member of program committees of international workshops and conferences in the areas of design automation, computer architecture, embedded systems, compilers, FPGAs, and asynchronous design. He has been an associate editor of ACM Transactions on Architecture and Code Optimization (TACO), since 2015, of ACM Computing Surveys (CSUR), since 2014, and of ACM Transactions on Design Automation of Electronic Systems (TODAES) from 2011 to 2016.
Pamela Isabel Delgado BordaI am a PhD student in the School of Computer and Communication Sciences at EPFL. I am part of the Operating Systems Laboratory and my advisor is Prof. Willy Zwaenepoel. I received my Bachelor's degree in Systems Engineering from Universidad Catolica Boliviana, Bolivia in 2008 and Master's degree in Computer Science, specialization Foundations of Software from EPFL in 2012.