Summary
In probability theory and statistics, Bayes' theorem (beɪz or beɪzɪz ; alternatively Bayes' law or Bayes' rule), and occasionally Bayes's theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole. One of the many applications of Bayes' theorem is Bayesian inference, a particular approach to statistical inference. When applied, the probabilities involved in the theorem may have different probability interpretations. With Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence. Bayesian inference is fundamental to Bayesian statistics, being considered by one authority as; "to the theory of probability what Pythagoras's theorem is to geometry." Bayes' theorem is named after the Reverend Thomas Bayes (beɪz), also a statistician and philosopher. Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter. His work was published in 1763 as An Essay towards solving a Problem in the Doctrine of Chances. Bayes studied how to compute a distribution for the probability parameter of a binomial distribution (in modern terminology). On Bayes's death his family transferred his papers to a friend, the minister, philosopher, and mathematician Richard Price. Over two years, Richard Price significantly edited the unpublished manuscript, before sending it to a friend who read it aloud at the Royal Society on 23 December 1763. Price edited Bayes's major work "An Essay towards solving a Problem in the Doctrine of Chances" (1763), which appeared in Philosophical Transactions, and contains Bayes' theorem.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.