In solid state physics and physical chemistry, the fine electronic structure of a solid are the features of the electronic bands induced by intrinsic interactions between charge carriers. Valence and conduction bands split slightly compared to the difference between the various bands. Some mechanisms that allow it are angular momentum couplings, spin-orbit coupling, lattice distortions (Jahn–Teller effect), and other interactions described by crystal field theory.
The name comes from the fine structure of atoms, where energy levels suffer from a similar effect from the non-relativistic calculation due to effects like spin–orbit interaction, zitterbewegung, and corrections to the kinetic energy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba. Computer hardware employs the electron charge in transistors to process information and the electron magnetic moment or spin for magnetic storage devices.
In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus.
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, alpha-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to g ...
NATURE PORTFOLIO2022
,
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces is studied ...