Summary
Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress. In organisms that perform oxygenic photosynthesis, excess light may lead to photoinhibition, or photoinactivation of the reaction centers, a process that does not necessarily involve chemical damage. When photosynthetic antenna pigments such as chlorophyll are excited by light absorption, unproductive reactions may occur by charge transfer to molecules with unpaired electrons. Because oxygenic phototrophs generate O2 as a byproduct from the photocatalyzed splitting of water (H2O), photosynthetic organisms have a particular risk of forming reactive oxygen species. Therefore, a diverse suite of mechanisms has developed in photosynthetic organisms to mitigate these potential threats, which become exacerbated under high irradiance, fluctuating light conditions, in adverse environmental conditions such as cold or drought, and while experiencing nutrient deficiencies which cause an imbalance between energetic sinks and sources. In eukaryotic phototrophs, these mechanisms include non-photochemical quenching mechanisms such as the xanthophyll cycle, biochemical pathways which serve as "relief valves", structural rearrangements of the complexes in the photosynthetic apparatus, and use of antioxidant molecules. Higher plants sometimes employ strategies such as reorientation of leaf axes to minimize incident light striking the surface. Mechanisms may also act on a longer time-scale, such as up-regulation of stress response proteins or down-regulation of pigment biosynthesis, although these processes are better characterized as "photoacclimatization" processes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.