Related courses (32)
ChE-304: Energy systems engineering
This course will provide a toolkit to students to understand and analyze sustainable energy systems. In addition, the main sustainable energy technologies will be introduced and their governing princi
ChE-340: The engineering of chemical reactions
Ce cours applique les concepts de la cinétique chimique et des bilans de masse et d'énergie pour résoudre les problèmes de génie des réactions chimiques, en mettant l'accent sur les applications indus
CS-444: Virtual reality
The goal of VR is to embed the users in a potentially complex virtual environment while ensuring that they are able to react as if this environment were real. The course provides a human perception-ac
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
ME-466: Instability
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
ENG-209: Data science for engineers with Python
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
ENG-366: Signals, instruments and systems
The goal of this course is to transmit knowledge in sensing, computing, communicating, and actuating for programmable field instruments and, more generally, embedded systems. The student will be able
EE-536: Physical models for micro and nanosystems
Students will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.