A phonovoltaic (pV) cell converts vibrational (phonons) energy into a direct current much like the photovoltaic effect in a photovoltaic (PV) cell converts light (photon) into power. That is, it uses a p-n junction to separate the electrons and holes generated as valence electrons absorb optical phonons more energetic than the band gap, and then collects them in the metallic contacts for use in a circuit. The pV cell is an application of heat transfer physics and competes with other thermal energy harvesting devices like the thermoelectric generator. While the thermoelectric generator converts heat, a broad spectrum of phonon and electron energy, to electricity, the pV cell converts only a narrow band of phonon energy, i.e., only the most energetic optical phonon modes. A narrow band of excited optical phonons has much less entropy than heat. Thus, the pV cell can exceed the thermoelectric efficiency. However, exciting and harvesting the optical phonon poses a challenge. By the first law of thermodynamics, the excitation driving electron generation in both photo- and phonovoltaic cells, i.e., the photon or phonon, must have more energy than the semiconductor band gap. For a PV cell, many materials are available with a band gap () well matched to the solar photon spectrum, like Silicon or Gallium Arsenide. For a pV cell, however, no current semiconducting materials have a band gap smaller than the energy of their most energetic (optical) phonon modes (). Thus, novel materials are required with both energetic optical phonon modes ( meV, e.g., graphene, diamond, or boron nitride) and a small band gap (, e.g., graphene). By the second law of thermodynamics, the excitation must be "hotter" than the cell for power generation to occur. In a PV, the light comes from an outside source, for example, the sun, which is nearly 6000 kelvins, whereas the PV is around 300 kelvins. Thus, the second law is satisfied and energy conversion is possible. However, the crystal vibrations driving power generation in a pV are intrinsic to the material itself.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.