Great 120-cellIn geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of the two such polytopes that is self-dual. It has the same edge arrangement as the 600-cell, icosahedral 120-cell as well as the same face arrangement as the grand 120-cell. Due to its self-duality, it does not have a good three-dimensional analogue, but (like all other star polyhedra and polychora) is analogous to the two-dimensional pentagram.
Regular skew polyhedronIn geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.
Density (polytope)In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
Jessen's icosahedronJessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, is a non-convex polyhedron with the same numbers of vertices, edges, and faces as the regular icosahedron. It is named for Børge Jessen, who studied it in 1967. In 1971, a family of nonconvex polyhedra including this shape was independently discovered and studied by Adrien Douady under the name six-beaked shaddock; later authors have applied variants of this name more specifically to Jessen's icosahedron.
Pentagonal antiprismIn geometry, the pentagonal antiprism is the third in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It consists of two pentagons joined to each other by a ring of ten triangles for a total of twelve faces. Hence, it is a non-regular dodecahedron. If the faces of the pentagonal antiprism are all regular, it is a semiregular polyhedron.
Cubic pyramidIn 4-dimensional geometry, the cubic pyramid is bounded by one cube on the base and 6 square pyramid cells which meet at the apex. Since a cube has a circumradius divided by edge length less than one, the square pyramids can be made with regular faces by computing the appropriate height. Exactly 8 regular cubic pyramids will fit together around a vertex in four-dimensional space (the apex of each pyramid). This construction yields a tesseract with 8 cubical bounding cells, surrounding a central vertex with 16 edge-length long radii.
Grand antiprismIn geometry, the grand antiprism or pentagonal double antiprismoid is a uniform 4-polytope (4-dimensional uniform polytope) bounded by 320 cells: 20 pentagonal antiprisms, and 300 tetrahedra. It is an anomalous, non-Wythoffian uniform 4-polytope, discovered in 1965 by Conway and Guy. Topologically, under its highest symmetry, the pentagonal antiprisms have D5d symmetry and there are two types of tetrahedra, one with S4 symmetry and one with Cs symmetry. Pentagonal double antiprismoid Norman W.
Octahedral pyramidIn 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one, the triangular pyramids can be made with regular faces (as regular tetrahedrons) by computing the appropriate height. Having all regular cells, it is a Blind polytope. Two copies can be augmented to make an octahedral bipyramid which is also a Blind polytope.
Complex reflection groupIn mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise. Complex reflection groups arise in the study of the invariant theory of polynomial rings. In the mid-20th century, they were completely classified in work of Shephard and Todd. Special cases include the symmetric group of permutations, the dihedral groups, and more generally all finite real reflection groups (the Coxeter groups or Weyl groups, including the symmetry groups of regular polyhedra).
Kinematics of the cuboctahedronThe skeleton of a cuboctahedron, considering its edges as rigid beams connected at flexible joints at its vertices but omitting its faces, does not have structural rigidity and consequently its vertices can be repositioned by folding (changing the dihedral angle) at edges and face diagonals. The cuboctahedron's kinematics is noteworthy in that its vertices can be repositioned to the vertex positions of the regular icosahedron, the Jessen's icosahedron, and the regular octahedron, in accordance with the pyritohedral symmetry of the icosahedron.