Concept

Genome-wide complex trait analysis

Summary
Genome-wide complex trait analysis (GCTA) Genome-based restricted maximum likelihood (GREML) is a statistical method for variance component estimation in genetics which quantifies the total narrow-sense (additive) contribution to a trait's heritability of a particular subset of genetic variants (typically limited to SNPs with MAF >1%, hence terms such as "chip heritability"/"SNP heritability"). This is done by directly quantifying the chance genetic similarity of unrelated individuals and comparing it to their measured similarity on a trait; if two unrelated individuals are relatively similar genetically and also have similar trait measurements, then the measured genetics are likely to causally influence that trait, and the correlation can to some degree tell how much. This can be illustrated by plotting the squared pairwise trait differences between individuals against their estimated degree of relatedness. The GCTA framework can be applied in a variety of settings. For example, it can be used to examine changes in heritability over aging and development. It can also be extended to analyse bivariate genetic correlations between traits. There is an ongoing debate about whether GCTA generates reliable or stable estimates of heritability when used on current SNP data. The method is based on the outdated and false dichotomy of genes versus the environment. It also suffers from serious methodological weaknesses, such as susceptibility to population stratification. GCTA heritability estimates are useful because they provide lower bounds for the genetic contributions to traits such as intelligence without relying on the assumptions used in twin studies and other family and pedigree studies, thereby corroborating them and enabling the design of well-powered genome-wide association study (GWAS) designs to find the specific genetic variants involved. For example, a GCTA estimate of 30% SNP heritability is consistent with a larger total genetic heritability of 70%.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Genomics: Common vs Rare Diseases
Explores the common vs rare disease variants, GWAS, odds ratios, P-values, and the 'missing heritability' in genetic studies.
Epigenetics: Chromatin Structure and Nucleosome Dynamics
Explores epigenetics, chromatin structure, nucleosome dynamics, and post-translational modifications of histones.
Post-Genomics and Health Challenges
By Dr. Luca Chiapperino delves into the implications of post-genomics on health and society, focusing on the molecularization of our biography, experiences, and living environment.
Show more
Related publications (39)
Related units (1)