Duality (mathematics)In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
Regular sequenceIn commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. For a commutative ring R and an R-module M, an element r in R is called a non-zero-divisor on M if r m = 0 implies m = 0 for m in M. An M-regular sequence is a sequence r1, ..., rd in R such that ri is a not a zero-divisor on M/(r1, ..., ri-1)M for i = 1, ..., d.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Grothendieck local dualityIn commutative algebra, Grothendieck local duality is a duality theorem for cohomology of modules over local rings, analogous to Serre duality of coherent sheaves. Suppose that R is a Cohen–Macaulay local ring of dimension d with maximal ideal m and residue field k = R/m. Let E(k) be a Matlis module, an injective hull of k, and let be the completion of its dualizing module. Then for any R-module M there is an isomorphism of modules over the completion of R: where Hm is a local cohomology group.
Dualizing moduleIn abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality. A dualizing module for a Noetherian ring R is a finitely generated module M such that for any maximal ideal m, the R/m vector space Ext(R/m,M) vanishes if n ≠ height(m) and is 1-dimensional if n = height(m). A dualizing module need not be unique because the tensor product of any dualizing module with a rank 1 projective module is also a dualizing module.
Hilbert series and Hilbert polynomialIn commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes.
Residue fieldIn mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R/m, which is a field. Frequently, R is a local ring and m is then its unique maximal ideal. This construction is applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point.
Glossary of algebraic geometryThis is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Completion of a ringIn abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
Injective moduleIn mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is to that of projective modules.