Multiple instruction, multiple dataIn computing, multiple instruction, multiple data (MIMD) is a technique employed to achieve parallelism. Machines using MIMD have a number of processors that function asynchronously and independently. At any time, different processors may be executing different instructions on different pieces of data. MIMD architectures may be used in a number of application areas such as computer-aided design/computer-aided manufacturing, simulation, modeling, and as communication switches.
TransmetaTransmeta Corporation was an American fabless semiconductor company based in Santa Clara, California. It developed low power x86 compatible microprocessors based on a VLIW core and a software layer called Code Morphing Software. Code Morphing Software (CMS) consisted of an interpreter, a runtime system and a dynamic binary translator. x86 instructions were first interpreted one instruction at a time and profiled, then depending upon the frequency of execution of a code block, CMS would progressively generate more optimized translations.
Xeon PhiXeon Phi was a series of x86 manycore processors designed and made by Intel. It was intended for use in supercomputers, servers, and high-end workstations. Its architecture allowed use of standard programming languages and application programming interfaces (APIs) such as OpenMP. Xeon Phi launched in 2010. Since it was originally based on an earlier GPU design (codenamed "Larrabee") by Intel that was cancelled in 2009, it shared application areas with GPUs.
Predication (computer architecture)In computer architecture, predication is a feature that provides an alternative to conditional transfer of control, as implemented by conditional branch machine instructions. Predication works by having conditional (predicated) non-branch instructions associated with a predicate, a Boolean value used by the instruction to control whether the instruction is allowed to modify the architectural state or not. If the predicate specified in the instruction is true, the instruction modifies the architectural state; otherwise, the architectural state is unchanged.
Benchmark (computing)In computing, a benchmark is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it. The term benchmark is also commonly utilized for the purposes of elaborately designed benchmarking programs themselves. Benchmarking is usually associated with assessing performance characteristics of computer hardware, for example, the floating point operation performance of a CPU, but there are circumstances when the technique is also applicable to software.