Concept

Building block (chemistry)

Summary
Building block is a term in chemistry which is used to describe a virtual molecular fragment or a real chemical compound the molecules of which possess reactive functional groups. Building blocks are used for bottom-up modular assembly of molecular architectures: nano-particles, metal-organic frameworks, organic molecular constructs, supra-molecular complexes. Using building blocks ensures strict control of what a final compound or a (supra)molecular construct will be. In medicinal chemistry, the term defines either imaginable, virtual molecular fragments or chemical reagents from which drugs or drug candidates might be constructed or synthetically prepared. Virtual building blocks are used in drug discovery for drug design and virtual screening, addressing the desire to have controllable molecular morphologies that interact with biological targets. Of special interest for this purpose are the building blocks common to known biologically active compounds, in particular, known drugs, or natural products. There are algorithms for de novo design of molecular architectures by assembly of drug-derived virtual building blocks. Organic functionalized molecules (reagents), carefully selected for the use in modular synthesis of novel drug candidates, in particular, by combinatorial chemistry, or in order to realize the ideas of virtual screening and drug design are also called building blocks. To be practically useful for the modular drug or drug candidate assembly, the building blocks should be either mono-functionalised or possessing selectively chemically addressable functional groups, for example, orthogonally protected. Selection criteria applied to organic functionalized molecules to be included in the building block collections for medicinal chemistry are usually based on empirical rules aimed at drug-like properties of the final drug candidates. Bioisosteric replacements of the molecular fragments in drug candidates could be made using analogous building blocks.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.