In real algebraic geometry, Harnack's curve theorem, named after Axel Harnack, gives the possible numbers of connected components that an algebraic curve can have, in terms of the degree of the curve. For any algebraic curve of degree m in the real projective plane, the number of components c is bounded by
The maximum number is one more than the maximum genus of a curve of degree m, attained when the curve is nonsingular. Moreover, any number of components in this range of possible values can be attained.
A curve which attains the maximum number of real components is called an M-curve (from "maximum") – for example, an elliptic curve with two components, such as or the Trott curve, a quartic with four components, are examples of M-curves.
This theorem formed the background to Hilbert's sixteenth problem.
In a recent development a Harnack curve is shown to be a curve whose amoeba has area equal to the Newton polygon of the polynomial P, which is called the characteristic curve of dimer models, and every Harnack curve is the spectral curve of some dimer model.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.