Cross ventilation is a natural phenomena where wind, fresh air or a breeze enters upon an opening, such as a window, and flows directly through the space and exits through an opening on the opposite side of the building (where the air pressure is lower). This produces a cool stream of air and as well as a current across the room from the exposed area to the sheltered area. Other terms used for the effect include, cross-breeze, cross-draft, wind effect ventilation and cross-flow ventilation.
Windows or vents positioned on opposite sides of the room allow passive breezes a pathway through the structure, which circulate the air and provide passive cooling. Cross ventilation is a wind-driven effect and requires no energy, in addition to being the most effective method of wind ventilation. A commonly used technique to remove pollutants and heat in an indoor environment, cross ventilation can also decrease or even obviate the need for an air-conditioner and can improve indoor air quality.
The phenomena occurs when openings in an environment (including vehicles) or building (houses, factories, sheds, etc) are set on opposite or adjoining walls, which allow air to enter and exit, thus creating a current of air across the interior environment. There is also a pressure difference between the opposite sides of the establishment. The effect is mostly driven by the wind, whereby the air is pulled into the building on the high pressure windward part and is pushed out on the low pressure downwind side of the establishment (because of the pressure difference between the openings). A wind's effect on a structure creates regions that have positive pressure on the building's upwind area and a negative pressure on the downwind side. Thus, the building shape and local wind patterns are critical in making wind pressures that force airflow through its openings.
If the windows on both sides of the buildings are opened, the overpressure on the side facing the wind, and/or low pressure on the adjacent protected side, will make a current of air through the room from the uncovered side towards the sheltered side.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course presents the fundamentals of energy demand in buildings while emphasizing the need for the comfort and well-being of occupants. In addition, prioritizations and trade-offs between energy an
The quality of the indoor climate is of great significance to building performance, human comfort, and well-being. This course offers a fundamental knowledge of the parameters that influence indoor cl
La conformité de la construction aux principes du développement durable requiert de l'ingénieur et de l'architecte la maîtrise de compétences multidisciplinaires. A l'issue du cours, les étudiants acq
Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition. In engineering, airflow is a measurement of the amount of air per unit of time that flows through a particular device. It can be described as a volumetric flow rate (volume of air per unit time) or a mass flow rate (mass of air per unit time).
Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces. There are two types of natural ventilation occurring in buildings: wind driven ventilation and buoyancy-driven ventilation. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building.
Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation (ANSI/ASHRAE Standard 55). The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat.
Delves into IAQ controls, covering ventilation strategies, filtration, and air cleaning, emphasizing the impact of indoor climate on human health and productivity.
Aerosol transmission remains a major challenge for the control of respiratory viruses. To date, prevention strategies include masks, vaccinations, physical distancing, travel restrictions, and lockdowns. Such measures are effective but come with heavy soci ...
Hoboken2023
, ,
This simulation-based study aimed to contribute to gaining knowledge on how much the deviation between occupant-related input by the national standard and by insitu measurements might impact predictions of heating/cooling needs in offices. Analysis was per ...
Residential ventilative cooling via natural ventilation is influenced by outdoor air pollution. However, relative to climate, outdoor air pollution is not comprehensively considered in determining the ventilative cooling potential of buildings. To assess t ...