Path (topology)In mathematics, a path in a topological space is a continuous function from the closed unit interval into Paths play an important role in the fields of topology and mathematical analysis. For example, a topological space for which there exists a path connecting any two points is said to be path-connected. Any space may be broken up into path-connected components. The set of path-connected components of a space is often denoted One can also define paths and loops in pointed spaces, which are important in homotopy theory.
Locally simply connected spaceIn mathematics, a locally simply connected space is a topological space that admits a basis of simply connected sets. Every locally simply connected space is also locally path-connected and locally connected. The circle is an example of a locally simply connected space which is not simply connected. The Hawaiian earring is a space which is neither locally simply connected nor simply connected. The cone on the Hawaiian earring is contractible and therefore simply connected, but still not locally simply connected.
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.
Star domainIn geometry, a set in the Euclidean space is called a star domain (or star-convex set, star-shaped set or radially convex set) if there exists an such that for all the line segment from to lies in This definition is immediately generalizable to any real, or complex, vector space. Intuitively, if one thinks of as a region surrounded by a wall, is a star domain if one can find a vantage point in from which any point in is within line-of-sight. A similar, but distinct, concept is that of a radial set.
Domain (mathematical analysis)In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Homotopical connectivityIn algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness. An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial.