Nature-based solutions (NBS) is the sustainable management and use of natural features and processes to tackle socio-environmental issues. These issues include climate change (mitigation and adaptation), water security, water pollution, food security, human health, biodiversity loss, and disaster risk management. The European Commission's definition of NBS states that these solutions are "inspired and supported by nature, which are cost-effective, simultaneously provide environmental, social and economic benefits and help build resilience. Such solutions bring more, and more diverse, nature and natural features and processes into cities, landscapes, and seascapes, through locally adapted, resource-efficient and systemic interventions". In 2020, the EC definition was updated to further emphasise that “Nature-based solutions must benefit biodiversity and support the delivery of a range of ecosystem services.” Through the use of NBS healthy, resilient, and diverse ecosystems (whether natural, managed, or newly created) can provide solutions for the benefit of both societies and overall biodiversity. For instance, the restoration and/or protection of mangroves along coastlines utilizes a Nature-based solution to accomplish several goals. Mangroves moderate the impact of waves and wind on coastal settlements or cities and sequester CO2. They also provide nursery zones for marine life that can be the basis for sustaining fisheries on which local populations may depend. Additionally, mangrove forests can help to control coastal erosion resulting from sea level rise. Similarly, green roofs or walls are Nature-based solutions that can be implemented in cities to moderate the impact of high temperatures, capture storm water, abate pollution, and act as carbon sinks, while simultaneously enhancing biodiversity. Conservation approaches and environmental management initiatives have been carried out for decades. More recently, progress has been made in better articulating the benefits Nature-based solutions can provide for human well-being.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
ENV-462: Urban Green&Blue infrastructure and global warming
The course introduces the concept of green and blue infrastructure in the context of global warming. It presents practical methods for planning, developing, and maintaining an efficient network of gre
AR-532: Green spaces - Concepts and planning approaches
Urban green offers a variety of services and thus plays an important role in the transformation of our cities. The course provides an overview of various innovative approaches to the planning and desi
CIVIL-424: Innovation for construction and the environment
The course delves into how innovation in construction, seen as an engineering process, progresses through steps and stages. It focuses on three main areas: (1) introducing new materials, (2) integrati
Show more
Related publications (32)
Related concepts (15)
Rewilding (conservation biology)
Rewilding is a form of ecological restoration aimed at increasing biodiversity and restoring natural processes. It differs from ecological restoration in that, while human intervention may be involved, rewilding aspires to reduce human influence on ecosystems. It is also distinct in that, while it places emphasis on recovering geographically specific sets of ecological interactions and functions that would have maintained ecosystems prior to human influence, rewilding is open to novel or emerging ecosystems which encompass new species and new interactions.
Water security
The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water (drought and water scarcity) or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production".
Water-sensitive urban design
Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.