Related concepts (19)
Tychonoff space
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc.
Metrizable space
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable.
Second-countable space
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.
Sierpiński space
In mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
General topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Base (topology)
In mathematics, a base (or basis; : bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals. Bases are ubiquitous throughout topology.
Lindelöf space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover. A is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term hereditarily Lindelöf is more common and unambiguous.
Separated sets
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.
Particular point topology
In mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.