Open mapping theorem (functional analysis)In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map. This proof uses the , and completeness of both and is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if and are taken to be Fréchet spaces.
Continuous functions on a compact Hausdorff spaceIn mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by the uniform norm. The uniform norm defines the topology of uniform convergence of functions on The space is a Banach algebra with respect to this norm.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Montel spaceIn functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact. A topological vector space (TVS) has the if every closed and bounded subset is compact. A is a barrelled topological vector space with the Heine–Borel property.
Mackey spaceIn mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey. Examples of locally convex spaces that are Mackey spaces include: All barrelled spaces and more generally all infrabarreled spaces Hence in particular all bornological spaces and reflexive spaces All metrizable spaces.
Nuclear spaceIn mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size.
Topological tensor productIn mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle. One of the original motivations for topological tensor products is the fact that tensor products of the spaces of smooth functions on do not behave as expected.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
Schwartz spaceIn mathematics, Schwartz space is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space of , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function. Schwartz space is named after French mathematician Laurent Schwartz.
EquicontinuityIn mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions. Equicontinuity appears in the formulation of Ascoli's theorem, which states that a subset of C(X), the space of continuous functions on a compact Hausdorff space X, is compact if and only if it is closed, pointwise bounded and equicontinuous.