The industrial internet of things (IIoT) refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including manufacturing and energy management. This connectivity allows for data collection, exchange, and analysis, potentially facilitating improvements in productivity and efficiency as well as other economic benefits. The IIoT is an evolution of a distributed control system (DCS) that allows for a higher degree of automation by using cloud computing to refine and optimize the process controls. The IIoT is enabled by technologies such as cybersecurity, cloud computing, edge computing, mobile technologies, machine-to-machine, 3D printing, advanced robotics, big data, internet of things, RFID technology, and cognitive computing. Five of the most important ones are described below: Cyber-physical systems (CPS): the basic technology platform for IoT and IIoT and therefore the main enabler to connect physical machines that were previously disconnected. CPS integrates the dynamics of the physical process with those of software and communication, providing abstractions and modeling, design, and analysis techniques. Cloud computing: With cloud computing IT services and resources can be uploaded to and retrieved from the Internet as opposed to a direct connection to a server. Files can be kept on cloud-based storage systems rather than on local storage devices. Edge computing: A distributed computing paradigm which brings computer data storage closer to the location where it is needed. In contrast to cloud computing, edge computing refers to decentralized data processing at the edge of the network. The industrial internet requires more of an edge-plus-cloud architecture rather than one based on purely centralized cloud; in order to transform productivity, products and services in the industrial world. Big data analytics: Big data analytics is the process of examining large and varied data sets, or big data.
Min-Jung Yoo, Prodromos Kolyvakis