Related courses (14)
EE-559: Deep learning
This course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
EE-608: Deep Learning For Natural Language Processing
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CIVIL-459: Deep learning for autonomous vehicles
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.