Category of groupsIn mathematics, the Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a . The study of this category is known as group theory. There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to . M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid.
MonomorphismIn the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of , a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow f : X → Y such that for all objects Z and all morphisms g1, g2: Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below.
EpimorphismIn , an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms , Epimorphisms are categorical analogues of onto or surjective functions (and in the the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion is a ring epimorphism. The of an epimorphism is a monomorphism (i.e. an epimorphism in a C is a monomorphism in the Cop).
CokernelThe cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f. Cokernels are to the , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain).
Quotient groupA quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class (known as a congruence class) as a single entity.
Category of setsIn the mathematical field of , the category of sets, denoted as Set, is the whose are sets. The arrows or morphisms between sets A and B are the total functions from A to B, and the composition of morphisms is the composition of functions. Many other categories (such as the , with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
Abelian categoryIn mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.