In a Euclidean space, the sum of angles of a triangle equals the straight angle (180 degrees, pi radians, two right angles, or a half-turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides. It was unknown for a long time whether other geometries exist, for which this sum is different. The influence of this problem on mathematics was particularly strong during the 19th century. Ultimately, the answer was proven to be positive: in other spaces (geometries) this sum can be greater or lesser, but it then must depend on the triangle. Its difference from 180° is a case of angular defect and serves as an important distinction for geometric systems. In Euclidean geometry, the triangle postulate states that the sum of the angles of a triangle is two right angles. This postulate is equivalent to the parallel postulate. In the presence of the other axioms of Euclidean geometry, the following statements are equivalent: Triangle postulate: The sum of the angles of a triangle is two right angles. Playfair's axiom: Given a straight line and a point not on the line, exactly one straight line may be drawn through the point parallel to the given line. Proclus' axiom: If a line intersects one of two parallel lines, it must intersect the other also. Equidistance postulate: Parallel lines are everywhere equidistant (i.e. the distance from each point on one line to the other line is always the same.) Triangle area property: The area of a triangle can be as large as we please. Three points property: Three points either lie on a line or lie on a circle. Pythagoras' theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides. Hyperbolic triangle The sum of the angles of a hyperbolic triangle is less than 180°. The relation between angular defect and the triangle's area was first proven by Johann Heinrich Lambert.
Radivoje Popovic, Mirjana Banjevic
Juan Ramon Mosig, Jean-François Zürcher, Marco Letizia, Benjamin Fuchs