The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs.
The COP usually exceeds 1, especially in heat pumps, because, instead of just converting work to heat (which, if 100% efficient, would be a COP of 1), it pumps additional heat from a heat source to where the heat is required. Most air conditioners have a COP of 2.3 to 3.5. Less work is required to move heat than for conversion into heat, and because of this, heat pumps, air conditioners and refrigeration systems can have a coefficient of performance greater than one.
For complete systems, COP calculations should include energy consumption of all power consuming auxiliaries. The COP is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.
Performance of absorption refrigerator chillers is typically much lower, as they are not heat pumps relying on compression, but instead rely on chemical reactions driven by heat.
The equation is:
where
is the useful heat supplied or removed by the considered system (machine).
is the net work put into the considered system in one cycle.
The COP for heating and cooling are different because the heat reservoir of interest is different. When one is interested in how well a machine cools, the COP is the ratio of the heat taken up from the cold reservoir to input work. However, for heating, the COP is the ratio of the magnitude of the heat given off to the hot reservoir (which is the heat taken up from the cold reservoir plus the input work) to the input work:
where
is the heat removed from the cold reservoir and added to the system;
is the heat given off to the hot reservoir; it is lost by the system and therefore negative (see heat).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, th
Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location (the "source") at a lower temperature to another location (the "sink" or "heat sink") at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a "refrigerator" or “cooler” if the objective is to cool the heat source (as in the normal operation of a freezer).
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through the application of work to the system.
Air conditioning, often abbreviated as A/C (US), AC (US), or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as "comfort cooling") and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical air conditioner or alternatively a variety of other methods, including passive cooling or ventilative cooling.
Between the ideal and reality lies the decisive world of the performance gap. This project is conducted within the framework of a Master Thesis at the Industrial Processes and Energy Systems Engineering (IPESE) laboratory of Ecole Polytechnique F´ed´erale ...
2024
,
This work presents the influence of splitters on the performance of small-scale turbopumps for organic Rankine cycle applications numerically. Different design parameters, such as impeller diameter at the outlet, number of blades, blade angle at the traili ...
In situ energy generation in soft, flexible, autonomous devices is challenging due to the need for highly stretchable and fault-resistant components. Nanofluids with pyro-, tribo-, or thermoelectric properties have recently emerged as promising solutions f ...