PreorderIn mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric (or ) preorder is a partial order, and a symmetric preorder is an equivalence relation. The name comes from the idea that preorders (that are not partial orders) are 'almost' (partial) orders, but not quite; they are neither necessarily antisymmetric nor asymmetric.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Directed setIn mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set together with a reflexive and transitive binary relation (that is, a preorder), with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction. The notion defined above is sometimes called an . A is defined analogously, meaning that every pair of elements is bounded below.
Spectrum of a ringIn commutative algebra, the prime spectrum (or simply the spectrum) of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings . For any ideal I of R, define to be the set of prime ideals containing I. We can put a topology on by defining the to be This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For f ∈ R, define Df to be the set of prime ideals of R not containing f.