A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity. (For the representation of accelerations in inertial frames, see the article Acceleration (special relativity), where concepts such as three-acceleration, four-acceleration, proper acceleration, hyperbolic motion etc. are defined and related to each other.)
A fundamental property of such a frame is the employment of the proper time of the accelerated observer as the time of the frame itself. This is connected with the clock hypothesis (which is experimentally confirmed), according to which the proper time of an accelerated clock is unaffected by acceleration, thus the measured time dilation of the clock only depends on its momentary relative velocity. The related proper reference frames are constructed using concepts like comoving orthonormal tetrads, which can be formulated in terms of spacetime Frenet–Serret formulas, or alternatively using Fermi–Walker transport as a standard of non-rotation. If the coordinates are related to Fermi–Walker transport, the term Fermi coordinates is sometimes used, or proper coordinates in the general case when rotations are also involved. A special class of accelerated observers follow worldlines whose three curvatures are constant. These motions belong to the class of Born rigid motions, i.e., the motions at which the mutual distance of constituents of an accelerated body or congruence remains unchanged in its proper frame.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.
Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass).
Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame.
The retinotopic projection of stimulus motion depends both on the motion of the stimulus and the movements of the observer. In this study, we aimed to quantify the contributions of endogenous (retinotopic) and exogenous (spatiotopic and motion-based) refer ...
We build a real-time multi-people tracker, which is based on the Kalman Filter. The input to the software is a Probabilistic Occupancy Map of the observed area. The main goal of the project is to incorporate this tracker to the real-time detection software ...
A reference frame is required to specify how motion is perceived. For example, the motion of part of an object is usually perceived relative to the motion of the object itself. Johansson (Psychological Research, 38, 379-393, 1976) proposed that the percept ...