**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Cellular automaton

Summary

A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state o

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related concepts (33)

Chaos theory

Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initi

John von Neumann

John von Neumann (vɒn_ˈnɔɪmən ; Neumann János Lajos ˈnɒjmɒn ˈjaːnoʃ ˈlɒjoʃ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engin

Turing completeness

In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-comp

Related courses (30)

BIOENG-450: In silico neuroscience

"In silico Neuroscience" introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies.

MICRO-435: Quantum and nanocomputing

The course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanocomputing, in-memory and molecular computing, cellular automata, and spintronic computing.

EE-530: Test of VLSI systems

Test of VLSI Systems covers theoretical knowledge related to the major algorithms used in VLSI test, and design for test techniques. Basic knowledge related to computer-aided design for test techniques, and their integration into a design-flow are presented.

Related units (6)

Related lectures (38)

Related publications (100)

Loading

Loading

Loading

Related people (18)

Nature abounds in examples of cellular systems. From ant colonies to cellular tissues, from molecular systems to the human brain, cellularity seems to be the way Nature operates. The brain, surely one of the most complex objects to be found on earth, is the quintessence of a cellular system: a huge number of simple elements with an extremely high local connectivity and deprived of any sort of central control, giving rise to a rich global behavior. Cellular interactions thus seem to be the basis for complex phenomena, exhibiting qualities often missing in human artifacts : robustness, self-repair and, more generally, adaptability. The goal of this thesis is to answer the following question: "What may be computed in cellular systems ?". This question is far from obvious and implies many interrogations such as how to obtain the aforementioned qualities, how to program such systems, and, more fundamentally, what does computation mean in a cellular system. This thesis is mainly centered around the abstract and formal model of Cellular Automata. Through the study and the resolution of different tasks by means of evolution or mathematical demonstrations, I will show that it is not unreasonable to expect artificial systems to exhibit some of the qualities of natural systems, and that (guided) artificial evolution is surely the best approach to define the local behavior of elements which, when grouped as a cellular system, give rise to a desired global behavior. Above all, I will argue that truly emergent behavior in such designed systems is only a matter of perspective.

1996

2002