The TI-89 and the TI-89 Titanium are graphing calculators developed by Texas Instruments (TI). They are differentiated from most other TI graphing calculators by their computer algebra system, which allows symbolic manipulation of algebraic expressions—equations can be solved in terms of variables, whereas the TI-83/84 series can only give a numeric result.
The TI-89 is a graphing calculator developed by Texas Instruments in 1998. The unit features a 160×100 pixel resolution LCD and a large amount of flash memory, and includes TI's Advanced Mathematics Software. The TI-89 is one of the highest model lines in TI's calculator products, along with the TI-Nspire. In the summer of 2004, the standard TI-89 was replaced by the TI-89 Titanium.
The TI-89 runs on a 32-bit microprocessor, the Motorola 68000, which nominally runs at 10 or 12 MHz, depending on the calculator's hardware version. The calculator has 256 kB of RAM, (190 kB of which are available to the user) and 2 MB of flash memory (700 kB of which is available to the user). The RAM and Flash ROM are used to store expressions, variables, programs, s, and lists.
The TI-89 is essentially a TI-92 Plus with a limited keyboard and smaller screen. It was created partially in response to the fact that while calculators are allowed on many standardized tests, the TI-92 was not due to the QWERTY layout of its keyboard. Additionally, some people found the TI-92 unwieldy and overly large. The TI-89 is significantly smaller—about the same size as most other graphing calculators. It has a flash ROM, a feature present on the TI-92 Plus but not on the original TI-92.
The major advantage of the TI-89 over other TI calculators is its built-in computer algebra system, or CAS. The calculator can evaluate and simplify algebraic expressions symbolically. For example, entering x^2-4x+4 returns . The answer is "prettyprinted" by default; that is, displayed as it would be written by hand (e.g. the aforementioned rather than x^2-4x+4).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
TI-BASIC is the official name of a BASIC-like language built into Texas Instruments (TI)'s graphing calculators. TI-BASIC is a language family of three different and incompatible versions, released on different products: TI-BASIC 83 (on Z80 processor) for TI-83 series, TI-84 Plus series TI-BASIC 89 (on 68k processor) for TI-89 series, TI-92 series, Voyage 200 TI-BASIC Nspire (on ARM processor) for TI-Nspire and TI-Nspire CAS TI rarely refers to the language by name, but the name TI-BASIC has been used in some developer documentation.
Programmable calculators are calculators that can automatically carry out a sequence of operations under control of a stored program. Most are Turing complete, and, as such, are theoretically general-purpose computers. However, their user interfaces and programming environments are specifically tailored to make performing small-scale numerical computations convenient, rather than general-purpose use. The first programmable calculators such as the IBM CPC used punched cards or other media for program storage.
A mobile game, or smartphone game, is a video game that is typically played on a mobile phone. The term also refers to all games that are played on any portable device, including from mobile phone (feature phone or smartphone), tablet, PDA to handheld game console, portable media player or graphing calculator, with and without network availability. The earliest known game on a mobile phone was a Tetris variant on the Hagenuk MT-2000 device from 1994. In 1997, Nokia launched Snake.
Application of a single metal or alloy is often restricted by its properties from optimal combination of performance and cost. Therefore, there is a vast need of joining dissimilar metals for various applications in biomedical, aerospace, automobile and ma ...