The no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information.
This was proved by Samuel L. Braunstein and Arun K. Pati in 2007. In 2011, the no-hiding theorem was experimentally tested using nuclear magnetic resonance devices where a single qubit undergoes complete randomization; i.e., a pure state transforms to a random mixed state. Subsequently, the lost information has been recovered from the ancilla qubits using suitable local unitary transformation only in the environment Hilbert space in accordance with the no-hiding theorem. This experiment for the first time demonstrated the conservation of quantum information.
Let be an arbitrary quantum state in some Hilbert space and let there be a physical process that transforms with . If is independent of the input state , then in the enlarged Hilbert space the mapping is of the form
where is the initial state of the environment, 's are the orthonormal basis of the environment Hilbert space and denotes the fact that one may augment the unused dimension of the environment Hilbert space by zero vectors.
The proof of the no-hiding theorem is based on the linearity and the unitarity of quantum mechanics. The original information which is missing from the final state simply remains in the subspace of the environmental Hilbert space. Also, note that the original information is not in the correlation between the system and the environment. This is the essence of the no-hiding theorem. One can in principle, recover the lost information from the environment by local unitary transformations acting only on the environment Hilbert space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, the no-broadcasting theorem is a result of quantum information theory. In the case of pure quantum states, it is a corollary of the no-cloning theorem. The no-cloning theorem for pure states says that it is impossible to create two copies of an unknown state given a single copy of the state. Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more recipients.
In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light.
In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist (the same result would be independently derived in 1982 by Wootters and Zurek as well as Dieks the same year).
We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference o ...