Concept

Push–pull agricultural pest management

Push–pull technology is an intercropping strategy for controlling agricultural pests by using repellent "push" plants and trap "pull" plants. For example, cereal crops like maize or sorghum are often infested by stem borers. Grasses planted around the perimeter of the crop attract and trap the pests, whereas other plants, like Desmodium, planted between the rows of maize, repel the pests and control the parasitic plant Striga. Push–pull technology was developed at the International Centre of Insect Physiology and Ecology (ICIPE) in Kenya in collaboration with Rothamsted Research, UK. and national partners. This technology has been taught to smallholder farmers through collaborations with universities, NGOs and national research organizations. Push–pull technology involves use of behaviour-modifying stimuli to manipulate the distribution and abundance of stemborers and beneficial insects for management of stemborer pests. It is based on in-depth understanding of chemical ecology, agrobiodiversity, plant-plant and insect-plant interactions, and involves intercropping a cereal crop with a repellent intercrop such as Desmodium uncinatum (silverleaf) (push), with an attractive trap plant such as Napier grass (pull) planted as a border crop around this intercrop. Gravid stemborer females are repelled from the main crop and are simultaneously attracted to the trap crop. The "push" in the intercropping scheme is provided by the plants that emit volatile chemicals (kairomones) which repel stemborer moths and drive them away from the main crop (maize or sorghum). The most commonly used species of push plants are legumes of the genus Desmodium (e.g. silverleaf Desmodium, D. uncinatum, and greenleaf Desmodium, D. intortum). The Desmodium is planted in between the rows of maize or sorghum, where they emit volatile chemicals (such as (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene) that repel the stemborer moths. These semiochemicals are also produced in grasses such as maize when they are damaged by insect herbivores, which may explain why they are repellent to stemborers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.