RAID (reɪd; "redundant array of inexpensive disks" or "redundant array of independent disks") is a data storage virtualization technology that combines multiple physical disk drive components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives referred to as "single large expensive disk" (SLED). Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance. The different schemes, or data distribution layouts, are named by the word "RAID" followed by a number, for example RAID 0 or RAID 1. Each scheme, or RAID level, provides a different balance among the key goals: reliability, availability, performance, and capacity. RAID levels greater than RAID 0 provide protection against unrecoverable sector read errors, as well as against failures of whole physical drives. The term "RAID" was invented by David Patterson, Garth A. Gibson, and Randy Katz at the University of California, Berkeley in 1987. In their June 1988 paper "A Case for Redundant Arrays of Inexpensive Disks (RAID)", presented at the SIGMOD Conference, they argued that the top-performing mainframe disk drives of the time could be beaten on performance by an array of the inexpensive drives that had been developed for the growing personal computer market. Although failures would rise in proportion to the number of drives, by configuring for redundancy, the reliability of an array could far exceed that of any large single drive. Although not yet using that terminology, the technologies of the five levels of RAID named in the June 1988 paper were used in various products prior to the paper's publication, including the following: Mirroring (RAID 1) was well established in the 1970s including, for example, Tandem NonStop Systems. In 1977, Norman Ken Ouchi at IBM filed a patent disclosing what was subsequently named RAID 4.
Michael Herzog, Aline Françoise Cretenoud
David Atienza Alonso, Marina Zapater Sancho, Alexandre Sébastien Julien Levisse, William Andrew Simon