Summary
C++11 is a version of the ISO/IEC 14882 standard for the C++ programming language. C++11 replaced the prior version of the C++ standard, called C++03, and was later replaced by C++14. The name follows the tradition of naming language versions by the publication year of the specification, though it was formerly named C++0x because it was expected to be published before 2010. Although one of the design goals was to prefer changes to the libraries over changes to the core language, C++11 does make several additions to the core language. Areas of the core language that were significantly improved include multithreading support, generic programming support, uniform initialization, and performance. Significant changes were also made to the C++ Standard Library, incorporating most of the C++ Technical Report 1 (TR1) libraries, except the library of mathematical special functions. C++11 was published as ISO/IEC 14882:2011 in September 2011 and is available for a fee. The working draft most similar to the published C++11 standard is N3337, dated 16 January 2012; it has only editorial corrections from the C++11 standard. The design committee attempted to stick to a number of goals in designing C++11: Maintain stability and compatibility with C++98 and possibly with C Prefer introducing new features via the standard library, rather than extending the core language Prefer changes that can evolve programming technique Improve C++ to facilitate systems and library design, rather than introduce new features useful only to specific applications Increase type safety by providing safer alternatives to earlier unsafe techniques Increase performance and the ability to work directly with hardware Provide proper solutions for real-world problems Implement zero-overhead principle (further support needed by some utilities must be used only if the utility is used) Make C++ easy to teach and to learn without removing any utility needed by expert programmers Attention to beginners is considered important, because most computer programmers will always be such, and because many beginners never widen their knowledge, limiting themselves to work in aspects of the language in which they specialize.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (27)
Template metaprogramming
Template metaprogramming (TMP) is a metaprogramming technique in which templates are used by a compiler to generate temporary source code, which is merged by the compiler with the rest of the source code and then compiled. The output of these templates can include compile-time constants, data structures, and complete functions. The use of templates can be thought of as compile-time polymorphism. The technique is used by a number of languages, the best-known being C++, but also Curl, D, Nim, and XL.
Set (abstract data type)
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set. Some set data structures are designed for static or frozen sets that do not change after they are constructed.
Haskell
Haskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Show more