The standard error (SE) of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM).
The sampling distribution of a mean is generated by repeated sampling from the same population and recording of the sample means obtained. This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.
Therefore, the relationship between the standard error of the mean and the standard deviation is such that, for a given sample size, the standard error of the mean equals the standard deviation divided by the square root of the sample size. In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean.
In regression analysis, the term "standard error" refers either to the square root of the reduced chi-squared statistic or the standard error for a particular regression coefficient (as used in, say, confidence intervals).
Suppose a statistically independent sample of observations is taken from a statistical population with a standard deviation of . The mean value calculated from the sample, , will have an associated standard error on the mean, , given by:
Practically this tells us that when trying to estimate the value of a population mean, due to the factor , reducing the error on the estimate by a factor of two requires acquiring four times as many observations in the sample; reducing it by a factor of ten requires a hundred times as many observations.
The standard deviation of the population being sampled is seldom known.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales.
In statistics, a k-th percentile, also known as percentile score or centile, is a score a given percentage k of scores in its frequency distribution falls ("exclusive" definition) or a score a given percentage falls ("inclusive" definition). Percentiles are expressed in the same unit of measurement as the input scores, in percent; for example, if the scores refer to human weight, the corresponding percentiles will be expressed in kilograms or pounds.
Sample size determination is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power.
Context. Gaia DR3 has offered the scientific community a remarkable dataset of approximately one million spectra acquired with the radial velocity spectrometer (RVS) in the calcium II triplet region, which is well suited to identify very metal-poor (VMP) s ...
The p-Laplacian problem -del & sdot; ((mu + |del u|(p-2))del u) = f is considered, where mu is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher ord ...
Walter De Gruyter Gmbh2024
,
We perform an error analysis of a fully discretised Streamline Upwind Petrov Galerkin Dynamical Low Rank (SUPG-DLR) method for random time-dependent advection-dominated problems. The time integration scheme has a splitting-like nature, allowing for potenti ...