Concept

Fiber (computer science)

Summary
In computer science, a fiber is a particularly lightweight thread of execution. Like threads, fibers share address space. However, fibers use cooperative multitasking while threads use preemptive multitasking. Threads often depend on the kernel's thread scheduler to preempt a busy thread and resume another thread; fibers yield themselves to run another fiber while executing. The key difference between fibers and kernel threads is that fibers use cooperative context switching, instead of preemptive time-slicing. In effect, fibers extend the concurrency taxonomy: on a single computer, multiple processes can run within a single process, multiple threads can run within a single thread, multiple fibers can run Fibers (sometimes called stackful coroutines or user mode cooperatively scheduled threads) and stackless coroutines (compiler synthesized state machines) represent two distinct programming facilities with vast performance and functionality differences. Because fibers multitask cooperatively, thread safety is less of an issue than with preemptively scheduled threads, and synchronization constructs including spinlocks and atomic operations are unnecessary when writing fibered code, as they are implicitly synchronized. However, many libraries yield a fiber implicitly as a method of conducting non-blocking I/O; as such, some caution and documentation reading is advised. A disadvantage is that fibers cannot utilize multiprocessor machines without also using preemptive threads; however, an M:N threading model with no more preemptive threads than CPU cores can be more efficient than either pure fibers or pure preemptive threading. In some server programs fibers are used to soft block themselves to allow their single-threaded parent programs to continue working. In this design, fibers are used mostly for I/O access which does not need CPU processing. This allows the main program to continue with what it is doing. Fibers yield control to the single-threaded main program, and when the I/O operation is completed fibers continue where they left off.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.