Pierre MagistrettiPierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain.
This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 497, 1999). He is the author of over 100 articles published in peer-reviewed journals.
He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the Functional Mapping of the Human Brain Conference. In November 2000 he has been a Mc Donnel Visiting Scholar at Washington University School of Medicine.
Pierre J. Magistretti is the President-Elect (2002 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 1998).
Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases".
POSITIONS AND HONORS
MAIN POSITION HELD
1988-2004 Professor of Physiology, University of Lausanne Medical School
1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School
2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School
2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL)
2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV)
2007-present Chairman of the Scientific Advisory Board of Centre dImagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne
2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV)
2010-present Director, National Center for Competence in Research (NCCR)
The synaptic bases of mental diseases of the Swiss National Science Foundation
2010-present Secretary General, International Brain Research Organization (IBRO)
MAIN HONORS AND AWARDS
1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences
2001 Elected Member of Academia Europaea
2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam
2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich
2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008
2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association
2011 Camillo Golgi Medal Award, Golgi Fondation
2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Florian Maria WurmFlorian Wurm received his academic training as a Biologist and Molecular Geneticist at the University of Giessen. He joined the Hoechst AG (Behringwerke) in Marburg as head of a laboratory in Virology. Working with immortalized mammalian cells for the establishment of production processes for alpha-interferons provided the first opportunity to combine basic research with medical application. In 1984 he joined Harvard Medical School in Boston as a Research Fellow in Molecular Biology. 1986 he took an offer from Genentech Inc. in San Francisco to work in Process Sciences on the development of large scale manufacturing processes for recombinant proteins. There he has held a number of leading positions and has acquired intimate knowledge in the generation of protein pharmaceuticals in mammalian cells in bioreactors (a number of which are now marketed products). In 1995 he joined the EPFL as a Professor for Biotechnology. Wurm has published more than 250 scientific papers and holds more than 20 patents/patent-applications. His H-index stands at 60 in 2021. He was Chairman (2005-2009) and is member of the Executive Board of the European Society of Animal Cell Technology (ESACT). He serves as a consultant to the pharmaceutical Biotech Industry, mainly in the fields of animal cell technology for recombinant protein production and in regulatory affairs. He works as a scientific reviewer and editior/asscciate editor for a number of international journals in the Biotech field. F.M. Wurm teaches classes to pre- and postgraduate students in the fields of Molecular and Cellular Biotechnology.
He was founder and Chief Scientific Officer of ExcellGene SA, a 2001 established company in Monthey, Switzerland. He took the position of President and CEO of ExcellGene in 2015. He retired from the CEO position in 2017 and continues to be President and Chief Scientific Officer of ExcellGene.
In 2008 Dr. Wurm was appointed Visiting Professor for Biotechnology at Jinan University in Guangzhou, China. He retired from his position at the EPFL in 2015. His laboratory is closed. With his team at ExcellGene and in collaboration with Dr. Paco Pino, Director of R&D, he continues to explore manufacturing sciences with animal cells in bioreactors.
Pablo Rivera FuentesPablo Rivera-Fuentes was born in 1984 in Mexico City. He received a BSc (2008) degree in chemical engineering from the National Autonomous University of Mexico. He obtained his MSc (2009) and PhD (2012) degrees in chemistry from ETH Zurich, working under the supervision of Prof. François Diederich. His dissertation was awarded the ETH Medal in 2013. Funded by the Swiss National Science Foundation (SNSF), he carried out postdoctoral research at Massachusetts Institute of Technology with Prof. Stephen J. Lippard (2012-2014). He subsequently worked at the University of Oxford with Prof. Harry L. Anderson (Department of Chemistry) and Prof. Christian Eggeling (Weatherall Institute of Molecular Medicine). He started his independent career as non-tenure-track assistant professor at ETH Zurich in October, 2015, and became tenure-track assistant professor of chemical biology at EPFL in August, 2019.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Cathrin BriskenCathrin Brisken, MD, PhD, is Associate Professor of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL). Dr. Brisken is internationally recognized for her work on endocrine control of mammary gland development and breast carcinogenesis.
Dr. Brisken received her MD and her PhD degree in Biophysics from the Georg August University of Göttingen, Germany. She completed her postdoctoral work in cancer biology with Dr. R.A. Weinberg at the Whitehead Institute of Biomedical Research in Cambridge, MA, USA. She previously held appointments at the Cancer Center of the Massachusetts General Hospital, Harvard Medical School, Boston and the Swiss Institute for Experimental Cancer Research (ISREC).
Research in Dr. Brisken’s laboratory focuses on the cellular and molecular underpinnings of estrogen and progesterone receptor signaling in the breast and the respective roles of these hormones and hormonally active compounds in carcinogenesis. The aim is to understand how recurrent exposures to endogenous and exogenous hormones contribute to breast carcinogenesis in order to better prevent and treat the disease. The laboratory has pioneered in vivo approaches to genetically dissect the role of the reproductive hormones in driving mouse mammary gland development and shown how they control intercellular communication. Dr. Brisken’s group has developed ex vivo and humanized mouse models using patient samples to study hormone action in human tissues in normal settings and during disease progression.
Dr. Brisken is member of the International Breast Cancer Study Group (IBCSG) Biological Protocol Working Group. She served as Dean of EPFL Doctoral School (more than 2000 PhD students in 18 PhD programs), as member of the Hinterzartener Kreis, the oncology think-tank associated with the German Science Foundation, and numerous Swiss, European, and AACR committees. She co-founded the International Cancer Prevention Institute.
Marwan Muhammad Ahmed AbdellahMarwan Abdellah, a self-motivated engineer born in Cairo, Egypt in 1987. He received his B.Sc. and M.Sc. degrees in Biomedical Engieering with distinction with honor from the Systems & Biomedical Engineering Department (SBME), Faculty of Engineering at Cairo University in 2009 and 2012 respectively. After graduation, he worked as a Research Engineer at IBE Technologies's R&D Department in a 4D ultrasound machines project. Then he moved to work as an Associate Software Engineer at the Biomedical Department in Symbyo Technologies. Afterwards, he joined the Multimedia Laboratory in the Swiss Federal Institute of Technology, Lausanne (EPFL) to conduct a research on H.264 & Reconfigurable Video Coding. Currently, he is working as a Scentific Visualization Engineer in the Blue Brain Project led by Prof. Henery Markram in the Brain Mind Institute at the Swiss Federal Institute of Technology, Lausanne (EPFL). Along with his professional career, Abdellah worked as an instructor at NILES (National Institute of Laser Enhanced Science) in Cairo University. He taught two courses in the areas of Computer Graphics and High Performance Computing. He focused in his M.Sc. thesis research on implementing high performance volume rendering techniques for large scale medical data on heterogeneous platforms. He succeeded in constructing a high performance Fourier Volume Render running entirely on CUDA-enable GPUs. Among his research intersets are High Perfromance Computing, Heterogenous Comuting, Visualization, Scalable Rendering, Computer Graphics & Modelling, Medical Image Processing, Video Processing & Reconfigurable Video Coding, Abdellah has been awarded a graphics card from NVIDIA during attending a workshop in High Performance Computing at the Intenational Center of Theoritical Physics (ICTP) in Trieste, Italy. His graduation project was honored by ITIDA and Egyptian Ministres of Telecommunications & Higher Education during a celebration organized by ITIDA in March 2010.
Graham KnottGraham Knott received his degree in physiology from the University of Southampton, UK, in 1990, and his PhD in neuroscience from the University of Tasmania, Australia, in 1995. He moved to the University of Lausanne in Switzerland in 1999 where he researched the plasticity of neuronal connectivity in the adult brain, developing correlative light and electron microscopy methods for the analysis of in vivo imaged neurons. In 2006 Graham joined the Ecole Polytechnique Fédérale de Lausanne, establishing the Bio Electron Microscopy Facility and has continued his research interests in brain plasticity and 3D electron microscopy.