Concept

Alexandroff extension

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space (but provides an embedding exactly for Tychonoff spaces). A geometrically appealing example of one-point compactification is given by the inverse stereographic projection. Recall that the stereographic projection S gives an explicit homeomorphism from the unit sphere minus the north pole (0,0,1) to the Euclidean plane. The inverse stereographic projection is an open, dense embedding into a compact Hausdorff space obtained by adjoining the additional point . Under the stereographic projection latitudinal circles get mapped to planar circles . It follows that the deleted neighborhood basis of given by the punctured spherical caps corresponds to the complements of closed planar disks . More qualitatively, a neighborhood basis at is furnished by the sets as K ranges through the compact subsets of . This example already contains the key concepts of the general case.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.