In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the point where it is irretrievably committed to the fission process. The energy to overcome this barrier can come from either neutron bombardment of the nucleus, where the additional energy from the neutron brings the nucleus to an excited state and undergoes deformation, or through spontaneous fission, where the nucleus is already in an excited and deformed state. It is important to note that efforts to understand fission processes are still an ongoing and have been a very difficult problem to solve since fission was first discovered by Lise Meitner, Otto Hahn, and Fritz Strassmann in 1938. While nuclear physicists understand many aspects of the fission process, there is currently no encompassing theoretical framework that gives a satisfactory account of the basic observations. The fission process can be understood when a nucleus with some equilibrium deformation absorbs energy (through neutron capture, for example), becomes excited and deforms to a configuration known as the "transition state" or "saddle point" configuration. As the nucleus deforms, the nuclear Coulomb energy decreases while the nuclear surface energy increases. At the saddle point, the rate of change of the Coulomb energy is equal to the rate of change of the nuclear surface energy. The formation and eventual decay of this transition state nucleus is the rate-determining step in the fission process and corresponds to the passage over an activation energy barrier to the fission reaction. When this occurs, the neck between the nascent fragments disappears and the nucleus divides into two fragments. The point at which this occurs is called the "scission point". From the description of the beginning of the fission process to the "scission point," it is apparent that the change of the shape of the nucleus is associated with a change of energy of some kind.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.