Concept

William of Soissons

William of Soissons; French: Guillaume de Soissons; was a French logician who lived in Paris in the 12th century. He belonged to a school of logicians, called the Parvipontians. William of Soissons seems to have been the first one to answer the question, "Why is a contradiction not accepted in logic reasoning?" by the principle of explosion. Exposing a contradiction was already in the ancient days of Plato a way of showing that some reasoning was wrong, but there was no explicit argument as to why contradictions were incorrect. William of Soissons gave a proof in which he showed that from a contradiction any assertion can be inferred as true. In example from: It is raining (P) and it is not raining (¬P) you may infer that there are trees on the moon (or whatever else)(E). In symbolic language: P & ¬P → E. If a contradiction makes anything true then it makes it impossible to say anything meaningful: whatever you say, its contradiction is also true. William's contemporaries compared his proof with a siege engine (12th century). Clarence Irving Lewis formalized this proof as follows: Proof V : or & : and → : inference P : proposition ¬ P : denial of P P &¬ P : contradiction. E : any possible assertion (Explosion). (1) P &¬ P → P (If P and ¬ P are both true then P is true) (2) P → P∨E (If P is true then P or E is true) (3) P &¬ P → P∨E (If P and ¬ P are both true then P or E are true (from (2)) (4) P &¬ P → ¬P (If P and ¬ P are both true then ¬P is true) (5) P &¬ P → (P∨E) &¬P (If P and ¬ P are both true then (P∨E) is true (from (3)) and ¬P is true (from (4))) (6) (P∨E) &¬P → E (If (P∨E) is true and ¬P is true then E is true) (7) P &¬ P → E (From (5) and (6) one after the other follows (7)) In the 15th century this proof was rejected by a school in Cologne. They didn't accept step (6). In 19th-century classical logic, the Principle of Explosion was widely accepted as self-evident, e.g. by logicians like George Boole and Gottlob Frege, though the formalization of the Soissons proof by Lewis provided additional grounding for the Principle of Explosion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.