A military artificial intelligence arms race is an arms race between two or more states to develop and deploy lethal autonomous weapons systems (LAWS). Since the mid-2010s, many analysts have noted the emergence of such an arms race between global superpowers for better military AI, driven by increasing geopolitical and military tensions. An AI arms race is sometimes placed in the context of an AI Cold War between the US and China.
Lethal autonomous weapons systems use artificial intelligence to identify and kill human targets without human intervention. LAWS have colloquially been called "slaughterbots" or "killer robots". Broadly, any competition for superior AI is sometimes framed as an "arms race". Advantages in military AI overlap with advantages in other sectors, as countries pursue both economic and military advantages.
In 2014, AI specialist Steve Omohundro warned that "An autonomous weapons arms race is already taking place". According to Siemens, worldwide military spending on robotics was US5.1billionin2010andUS7.5 billion in 2015.
China became a top player in artificial intelligence research in the 2010s. According to the Financial Times, in 2016, for the first time, China published more AI papers than the entire European Union. When restricted to number of AI papers in the top 5% of cited papers, China overtook the United States in 2016 but lagged behind the European Union. 23% of the researchers presenting at the 2017 American Association for the Advancement of Artificial Intelligence (AAAI) conference were Chinese. Eric Schmidt, the former chairman of Alphabet, has predicted China will be the leading country in AI by 2025.
One risk concerns the AI race itself, whether or not the race is won by any one group. There are strong incentives for development teams to cut corners with regard to the safety of the system, which may result in increased algorithmic bias. This is in part due to the perceived advantage of being the first to develop advanced AI technology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Existential risk from artificial general intelligence is the hypothesis that substantial progress in artificial general intelligence (AGI) could result in human extinction or another irreversible global catastrophe. One argument goes as follows: The human species currently dominates other species because the human brain possesses distinctive capabilities other animals lack. If AI were to surpass humanity in general intelligence and become superintelligent, then it could become difficult or impossible to control.
The ethics of artificial intelligence is the branch of the ethics of technology specific to artificially intelligent systems. It is sometimes divided into a concern with the moral behavior of humans as they design, make, use and treat artificially intelligent systems, and a concern with the behavior of machines, in machine ethics. Robot ethics The term "robot ethics" (sometimes "roboethics") refers to the morality of how humans design, construct, use and treat robots. Robot ethics intersect with the ethics of AI.
Friendly artificial intelligence (also friendly AI or FAI) is hypothetical artificial general intelligence (AGI) that would have a positive (benign) effect on humanity or at least align with human interests or contribute to fostering the improvement of the human species. It is a part of the ethics of artificial intelligence and is closely related to machine ethics. While machine ethics is concerned with how an artificially intelligent agent should behave, friendly artificial intelligence research is focused on how to practically bring about this behavior and ensuring it is adequately constrained.
Artificial intelligence (AI) is increasingly used in an ever larger number of industries. Alongside this development, however, abundant works argue that AI-driven systems are lacking in terms of safety, ethics and transparency. As a direct consequence, the ...
The desire and ability to place AI-enabled applications on the edge has grown significantly in recent years. However, the compute-, area-, and power-constrained nature of edge devices are stressed by the needs of the AI-enabled applications, due to a gener ...
This article reports on the current state of the OBI DICT project, a bilingual e-dictionary of oracle-bone inscriptions (OBI), incorporating artificial intelligence (AI) image recognition technology. It first provides a brief overview of the development of ...