The oersted (symbol Oe) is the coherent derived unit of the auxiliary magnetic field H in the centimetre–gram–second system of units (CGS). It is equivalent to 1 dyne per maxwell. In the CGS system, the unit of the H-field is the oersted and the unit of the B-field is the gauss. In the SI system, the unit ampere per meter (A/m), which is equivalent to newton per weber, is used for the H-field and the unit of tesla is used for the B-field. The unit was established by the IEC in the 1930s in honour of Danish physicist Hans Christian Ørsted. Ørsted discovered the connection between magnetism and electric current when a magnetic field produced by a current-carrying copper bar deflected a magnetised needle during a lecture demonstration. The oersted is defined as a dyne per unit pole. The oersted is 1000/4π (≈) amperes per meter, in terms of SI units. The H-field strength inside a long solenoid wound with 79.58 turns per meter of a wire carrying 1 A is approximately 1 oersted. The preceding statement is exactly correct if the solenoid considered is infinite in length with the current evenly distributed over its surface. The oersted is closely related to the gauss (G), the CGS unit of magnetic flux density. In a vacuum, if the magnetizing field strength is 1 Oe, then the magnetic field density is 1 G, whereas, in a medium having permeability μr (relative to permeability of vacuum), their relation is: Because oersteds are used to measure magnetizing field strength, they are also related to the magnetomotive force (mmf) of current in a single-winding wire-loop: maximum energy product The stored energy in a magnet, called magnet performance or maximum energy product (often abbreviated BHmax), is typically measured in units of megagauss-oersteds (MG⋅Oe).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.