PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MATH-261: Discrete optimizationThis course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
EE-568: Reinforcement learningThis course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
CS-448: Sublinear algorithms for big data analysisIn this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
CS-459: Foundations of probabilistic proofsProbabilistic proof systems (eg PCPs and IPs) have had a tremendous impact on theoretical computer science, as well as on real-world secure systems. They underlie delegation of computation protocols a
MATH-329: Continuous optimizationThis course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith