Concept

Syntrophy

Summary
In biology, syntrophy, synthrophy, or cross-feeding (from Greek syn meaning together, trophe meaning nourishment) is the phenomenon of one species feeding on the metabolic products of another species to cope up with the energy limitations by electron transfer. In this type of biological interaction, metabolite transfer happens between two or more metabolically diverse microbial species that live in close proximity to each other. The growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Thus, syntrophism can be considered as an obligatory interdependency and a mutualistic metabolism between two different bacterial species. Syntrophy is often used synonymously for mutualistic symbiosis especially between at least two different bacterial species. Syntrophy differs from symbiosis in a way that syntrophic relationship is primarily based on closely linked metabolic interactions to maintain thermodynamically favorable lifestyle in a given environment. Syntrophy plays an important role in a large number of microbial processes especially in oxygen limited environments, methanogenic environments and anaerobic systems. In anoxic or methanogenic environments such as wetlands, swamps, paddy fields, landfills, digestive tract of ruminants, and anerobic digesters syntrophy is employed to overcome the energy constraints as the reactions in these environments proceed close to thermodynamic equilibrium. The main mechanism of syntrophy is removing the metabolic end products of one species so as to create an energetically favorable environment for another species. This obligate metabolic cooperation is required to facilitate the degradation of complex organic substrates under anaerobic conditions. Complex organic compounds such as ethanol, propionate, butyrate, and lactate cannot be directly used as substrates for methanogenesis by methanogens. On the other hand, fermentation of these organic compounds cannot occur in fermenting microorganisms unless the hydrogen concentration is reduced to a low level by the methanogens.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.