Paleobiology (or palaeobiology) is an interdisciplinary field that combines the methods and findings found in both the earth sciences and the life sciences. Paleobiology is not to be confused with geobiology, which focuses more on the interactions between the biosphere and the physical Earth.
Paleobiological research uses biological field research of current biota and of fossils millions of years old to answer questions about the molecular evolution and the evolutionary history of life. In this scientific quest, macrofossils, microfossils and trace fossils are typically analyzed. However, the 21st-century biochemical analysis of DNA and RNA samples offers much promise, as does the biometric construction of phylogenetic trees.
An investigator in this field is known as a paleobiologist.
Paleobotany applies the principles and methods of paleobiology to flora, especially green land plants, but also including the fungi and seaweeds (algae). See also mycology, phycology and dendrochronology.
Paleozoology uses the methods and principles of paleobiology to understand fauna, both vertebrates and invertebrates. See also vertebrate and invertebrate paleontology, as well as paleoanthropology.
Micropaleontology applies paleobiologic principles and methods to archaea, bacteria, protists and microscopic pollen/spores. See also microfossils and palynology.
Paleovirology examines the evolutionary history of viruses on paleobiological timescales.
Paleobiochemistry uses the methods and principles of organic chemistry to detect and analyze molecular-level evidence of ancient life, both microscopic and macroscopic.
Paleoecology examines past ecosystems, climates, and geographies so as to better comprehend prehistoric life.
Taphonomy analyzes the post-mortem history (for example, decay and decomposition) of an individual organism in order to gain insight on the behavior, death and environment of the fossilized organism.
Paleoichnology analyzes the tracks, borings, trails, burrows, impressions, and other trace fossils left by ancient organisms in order to gain insight into their behavior and ecology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The phylogenetic classification of invertebrates (extinct and extant) remains a work-in-progress. The taxonomy of commonly fossilized invertebrates combines both traditional (old) and modern (21st-century) paleozoological terminology. The paleobiologic systematics that follow are not intended to be comprehensive, rather encompass invertebrates that (a) are popularly collected as fossils and/or (b) extinct. As a result, some groups of invertebrates are not listed.
The Treatise on Invertebrate Paleontology (or TIP) published by the Geological Society of America and the University of Kansas Press, is a definitive multi-authored work of some 50 volumes, written by more than 300 paleontologists, and covering every phylum, class, order, family, and genus of fossil and extant (still living) invertebrate animals. The prehistoric invertebrates are described as to their taxonomy, morphology, paleoecology, stratigraphic and paleogeographic range.
Invertebrate paleontology (also spelled invertebrate palaeontology) is sometimes described as invertebrate paleozoology or invertebrate paleobiology. Whether it is considered to be a subfield of paleontology, paleozoology, or paleobiology, this discipline is the scientific study of prehistoric invertebrates by analyzing invertebrate fossils in the geologic record. By invertebrates are meant the non-vertebrate creatures of the kingdom Animalia (or Metazoa) in the biotic domain of Eukaryota.
NanoSIMS is a relatively new technology that is being applied to ancient carbonaceous structures to gain insight into their biogenicity and syngeneity. NanoSIMS studies of well preserved organic microfossils from the Neoproterozoic (similar to 0.8Ga) Bitte ...