Related publications (159)

Robust NAS under adversarial training: benchmark, theory, and beyond

Volkan Cevher, Grigorios Chrysos, Fanghui Liu, Yongtao Wu

Recent developments in neural architecture search (NAS) emphasize the significance of considering robust architectures against malicious data. However, there is a notable absence of benchmark evaluations and theoretical guarantees for searching these robus ...
2024

Aggregating Spatial and Photometric Context for Photometric Stereo

David Honzátko

Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024

Coronal jets identification using Deep Learning as Image and Video Object Detection

This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
2024

ProGAP: Progressive Graph Neural Networks with Differential Privacy Guarantees

Daniel Gatica-Perez, Sina Sajadmanesh

Graph Neural Networks (GNNs) have become a popular tool for learning on graphs, but their widespread use raises privacy concerns as graph data can contain personal or sensitive information. Differentially private GNN models have been recently proposed to p ...
Assoc Computing Machinery2024

Sparse autoregressive neural networks for classical spin systems

Giuseppe Carleo, Dian Wu, Indaco Biazzo

Efficient sampling and approximation of Boltzmann distributions involving large sets of binary variables, or spins, are pivotal in diverse scientific fields even beyond physics. Recent advances in generative neural networks have significantly impacted this ...
Iop Publishing Ltd2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.