**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Gaussian integral

Summary

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function f(x) = e^{-x^2} over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
\int_{-\infty}^\infty e^{-x^2},dx = \sqrt{\pi}.
Abraham de Moivre originally discovered this type of integral in 1733, while Gauss published the precise integral in 1809. The integral has a wide range of applications. For example, with a slight change of variables it is used to compute the normalizing constant of the normal distribution. The same integral with finite limits is closely related to both the error function and the cumulative distribution function of the normal distribution. In physics this type of integral appears frequently, for example, in quantum mechanics, to find the probability density of the ground state of the harmonic oscillator. This integral is also used in the path integral formulation, to find

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

No results

Related publications (7)

Loading

Loading

Loading

Related courses (34)

Related people

MATH-203(c): Analysis III

Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

MATH-106(a): Analysis II

Étudier les concepts fondamentaux d'analyse, et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

ME-371: Discretization methods in fluids

Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.
Les concepts fondamentaux sont présentés dans le cadre de la méthode des différences finies puis étendus à celles des éléments finis et spectraux.

No results

Related concepts (12)

Factorial

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all positive integers le

Gamma function

In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma functio

Integral

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the

Related lectures (69)

We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant, Delta is the discrete Laplacian defined by Delta f (x) = 1/2d Sigma vertical bar y-x vertical bar=1 (f(Y) - f (0)), and {W(t,x) ; t > 0} x is an element of Z(d) is a family of independent fractional Brownian motions with Hurst parameter H is an element of (0,1), indexed by Z(d). We make sense of this equation via a Stratonovich integration obtained by approximating the fractional Brownian motions with a family of Gaussian processes possessing absolutely continuous sample paths. We prove that the Feynman-Kac representation u(t, x) = E-infinity [u(0) (X(t)) exp integral(t)(0) W(ds,X(t-s))], (1) is a mild solution to this problem. Here u(0) (y) is the initial value at site y is an element of Z(d), {X(t); t >= 0} is a simple random walk with jump rate f, started at x E Zd and independent of the family {W(t, x) ; t >= 0}(x is an element of Zd) and E-infinity is expectation withrespect to this random walk. We give a unified argument that works for any Hurst parameter H is an element of (0,1). (C) 2015 Elsevier Inc. All rights reserved.

Surface Mixed Potential Integral Equation (MPIE) formulations together with the Method of Moments (MoM) are widely used to solve electromagnetic problems. An accurate evaluation of the Green functions (GF) associated to the integral equation and of the coupling integrals needed to fill the MoM matrix are the cornerstone steps in the implementation of integral equation algorithms. This thesis is mainly focused on these two topics. The main intended application of our MPIE-MoM formulation is the analysis of enclosed structures, with the shield being materialized by rectangular cavities with perfect conducting (PEC) walls. GFs for rectangular cavities constitute a classic research topic, where there is still a lot of room for improvements. In this area, three main original results are presented in this thesis. Firstly, the exponential convergence of the modal series is ensured via a sophisticated coordinate permutation method. In second place, a study which allows setting the relationship between cavity resonances, excited modes and GF components' singularities, is fully developed. Finally, a novel hybrid method, to compute the GF static part is introduced. This method combines in a new original way both, the modal and image expansions of the cavity GFs. The discretization of the MPIE via the method of moments leads to a matrix equation. In the Galerkin version of the MoM, the matrix elements are given by four-dimensional integrals over source and observer surface domains of the GFs multiplied by some basis and test functions. These so-called coupling integrals invoke the integration of the GF singularity, which in the MPIE case is of the weak type (1/R). The accurate integration of this singularity is a very challenging topic, which has been tackled following many different strategies. Here, the closed analytical expressions of the 4D integral over rectangular domains of this singularity are presented. The problem related to the integration of the GF singularity on arbitrary shaped domains is solved through a hybrid numerical-analytical technique based on an original integral transformation and using by the first time double exponential (DE) numerical integration rules. The thesis concludes with several numerical examples and benchmarks of practical interest. They ascertain the validity of strategies, concepts and results of this thesis and they strongly hint to the development of future competitive computer tools.

,

We consider mixed-integer sets described by system of linear inequalities in which the constraint matrix A is totally unimodular; the right-hand side is arbitrary vector; and a subset of the variables is required to be integer. We show that the problem of checking nonemptiness of a set of this type is NP-complete, even in the case in which the linear system describes mixed-integer network flows with half-integral requirement on the nodes.