Ph D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Mathias Payer is a security researcher and professor at the EPFL school of computer and communication sciences (IC), leading the HexHive group. His research focuses on protecting applications in the presence of vulnerabilities, with a focus on memory corruption and type violations. He is interested in software security, system security, binary exploitation, effective mitigations, fault isolation/privilege separation, strong sanitization, and software testing (fuzzing) using a combination of binary analysis and compiler-based techniques. More details are available in his CV.
Jean-Pierre Hubaux is a full professor at EPFL and head of the Laboratory for Data Security. Through his research, he contributes to laying the foundations and developing the tools for protecting privacy in today’s hyper-connected world. He has pioneered the areas of privacy and security in mobile/wireless networks and in personalized health. He is the academic director of the Center for Digital Trust (C4DT). He leads the Data Protection in Personalized Health (DPPH) project funded by the ETH Council and is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics and Health (GA4GH). From 2008 to 2019 he was one of the seven commissioners of the Swiss FCC. He is a Fellow of both IEEE (2008) and ACM (2010). Recent awards: two of his papers obtained distinctions at the IEEE Symposium on Security and Privacy in 2015 and 2018. He is among the most cited researchers in privacy protection and in information security. Spoken languages: French, English, German, Italian
André Schiper graduated in Physics from the ETHZ in Zurich in 1973 and received the PhD degree in Computer Science from EPFL in 1980. He has been a professor of computer science at EPFL since 1985, leading the Distributed Systems Laboratory. During the academic year 1992-1993 he was on sabbatical leave at the University of Cornell, Ithaca, New York (working with Ken Birman and Aleta Ricciardi), and in 2004-2005 at the Ecole Polytechnique in Palaiseau, France (working with Bernadette Charron-Bost). His research interests are in the area of dependable distributed systems, middleware support for dependable systems, replication techniques (including for database systems), group communication, distributed transactions, and MANETs (mobile ad-hoc networks).
Prof. Schiper is member of the editorial boards of
Distributed Computing (DC), Springer Verlag - ACM,
Transactions on Dependable and Secure Computing (TDSC), IEEE,
International Journal of Security and Networks (Inderscience).
Edoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.