Concept

Holevo's theorem

Holevo's theorem is an important limitative theorem in quantum computing, an interdisciplinary field of physics and computer science. It is sometimes called Holevo's bound, since it establishes an upper bound to the amount of information that can be known about a quantum state (accessible information). It was published by Alexander Holevo in 1973. As for several concepts in quantum information theory, accessible information is best understood in terms of a 2-party communication. So we introduce two parties, Alice and Bob. Alice has a classical random variable X, which can take the values {1, 2, ..., n} with corresponding probabilities {p1, p2, ..., pn}. Alice then prepares a quantum state, represented by the density matrix ρX chosen from a set {ρ1, ρ2, ... ρn}, and gives this state to Bob. Bob's goal is to find the value of X, and in order to do that, he performs a measurement on the state ρX, obtaining a classical outcome, which we denote with Y. In this context, the amount of accessible information, that is, the amount of information that Bob can get about the variable X, is the maximum value of the mutual information I(X : Y) between the random variables X and Y over all the possible measurements that Bob can do. There is currently no known formula to compute the accessible information. There are however several upper bounds, the best-known of which is the Holevo bound, which is specified in the following theorem. Let {ρ1, ρ2, ..., ρn} be a set of mixed states and let ρX be one of these states drawn according to the probability distribution P = {p1, p2, ..., pn}. Then, for any measurement described by POVM elements {EY} and performed on , the amount of accessible information about the variable X knowing the outcome Y of the measurement is bounded from above as follows: where and is the von Neumann entropy. The quantity on the right hand side of this inequality is called the Holevo information or Holevo χ quantity: Consider the composite system that describes the entire communication process, which involves Alice's classical input , the quantum system , and Bob's classical output .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.